
Introduction

• DH IO Modules project was started in the very beginning
of Y2K

• Immediate problems:
– need direct access to events to keep runsections compact on the

output
– need chain like structure of input and output stream - data branch

lifetime is spread over many sequential files - branch driven design

• Framework:
– was design for essentially sequential access
– IO was designed as file driven - SeqRootDiskFile

• To fulfill CDF data convention and DH requirements
necessary functionality was included into DHMods

DH IO Modules Project Status Report. DH IO Modules Project Status Report.
F.Ratnikov, RUTGERSF.Ratnikov, RUTGERS

RootFileStream
• Interface to ROOT was designed in the spring 2000

– accept relation Object ↔Branch name
– automatically reconnect object to corresponding ROOT branches

when new I/O file is openned
– support fast (Tbuffer) mode of event read/write
– is essentially multibranch implementation
– Pure ROOT interface, no relations with Edm or Framework

• CdfRootFileStream was inhereted from RootFileStream
and knew about some Edm details.

• Possibility of multi-branch CDF event structure was
discussed that time, conclusion was: it is not necessary
– multi-branch capability of RootFileStream was used as a particular

case of single branch

EventInfo
• External source of information about event is required for

Tbuffer access mode. This mode is essential for the FARM
concatenator operation

• EventInfo is a class containing information about event
that is necessary for I/O module operation without access
to the event information (currently run#, rs#, event#,
record type, rs range for ERS record)

• This information was naturally put into separate ROOT
branch

• EventInfo branch is essentially the “primary” branch.
– DH IO modules just deliver data of EventRecord from/to

corresponding branch as a particular case of any other object and
anther branch

– User is able to associate another object with another branch

AppRootOutputModule
• The AppRootOutputModule is a base module class

providing user possibility to define new branch in the
event and associate it with any object

• It is implementation for output - no input implementation
• It guarantees synchronization between event branch and

user branch
• It guarantees branch is created in only datastreams

connected to the data processing path containing this
module.

Design of the DH IO Modules Project
• Project has essentially modular structure

– well defined and well separated interfaces to
• Edm
• DFC
• DH
• ROOT

• Project has all the necessary hooks to handle multi-branch
event structure properly

• Due to lack of the necessary Framework functionality
modules perform many tasks not specific to DH itself

DHInput Functionality: Select Input
Data List

• Select data by any combination of dataset or fileset or file
names

• Full “include” and “exclude” support
• Extra restriction on required run# and runsection# can be

applied
• Access both DH data and local private files

– Accept wildcards for local files
• 100% compatibility with FileInputModule
• Communication with DFC to obtain full list of requested

data
• Communication with DH to deliver requested data in the

most effective order

Direct Acess to Events
• Process events in natural order, build catalog of events in

the file (necessary for correct output file production)
– Fast operation using EventInfo branch (any data except RAW)
– Slow operation using LRIH information (RAW data)

• Navigation in the file
– Skip events forward and backwards
– Direct access to the event by run#/event#
– Inserting necessary BOR records when run# is changed

Fast Copy (Concatenator Mode)
• Read/Write events by ROOT buffers without expanding to

separate objects
– Speed up IO bandwidth by factor of 5
– Is necessary for concatenating FARM output files

Filtering events
• Input events can be filtered by run# and event#

Output Module Functionality
• Specify output by file name or by dataset name
• Assign data file name according to the CDF convention
• Collect statistics for the output file
• Collect output files in given directory
• Can put FILE record into DFC
• Split output data into files of given size
• Keep runsections compact in the file
• Intermediate save the file status to minimize reprocessing

in case of job crash
• Creates new ERS records when EmptyRunsection

condition is detected
• Can create many data branches synchronized with primary

data branch

Crash Recovery
• The goal is to continue data processing after the job has

crashed due to any reason
– with minimal reprocessing overlap
– keeping DFC consistent at any time

• Sophisticated procedure is developed
• It is semiautomatic

– The close coordination between Input and Output is required to
make procedure mostly automatic

– Automatic procedure can be implemented on the Framework level
where coordination of Input and Output is possible

Still Missed
• Clean up of output from obsolete BOR records

– several BOR for the same run
– BOR for the run which all events were filtered out

• Minor issues of current user requests

Conclusions
• DH IO Modules project has successfully reached all the

original goals and satisfy to all project requirements
• It fulfill to mutually contradictory requirements having high

performance for FARM operation and being flexible for user
convenience

• Support of the modules mainly includes
– following changes in the interfering projects (DH, ROOT)
– satisfying user requests making modules more user friendly
– keeping documentation up to date

• DH IO Modules include hooks necessary to support multi-branch
event structure

• Multi-branch Modules project has essentially different design and
structure

• Framework related functionality of the DHMods should be
supported by Framework for the new project

• DH specific functionality of the DHMods can be easily moved into
new project using original DHMods interfaces

